In non-integrable Hamiltonian systems with mixed phase space and discrete
symmetries, sequences of pitchfork bifurcations of periodic orbits pave the way
from integrability to chaos. In extending the semiclassical trace formula for
the spectral density, we develop a uniform approximation for the combined
contribution of pitchfork bifurcation pairs. For a two-dimensional double-well
potential and the familiar H\'enon-Heiles potential, we obtain very good
agreement with exact quantum-mechanical calculations. We also consider the
integrable limit of the scenario which corresponds to the bifurcation of a
torus from an isolated periodic orbit. For the separable version of the
H\'enon-Heiles system we give an analytical uniform trace formula, which also
yields the correct harmonic-oscillator SU(2) limit at low energies, and obtain
excellent agreement with the slightly coarse-grained quantum-mechanical density
of states.