We examine critically the issue of phase transitions in one-dimensional
systems with short range interactions. We begin by reviewing in detail the most
famous non-existence result, namely van Hove's theorem, emphasizing its
hypothesis and subsequently its limited range of applicability. To further
underscore this point, we present several examples of one-dimensional short
ranged models that exhibit true, thermodynamic phase transitions, with
increasing level of complexity and closeness to reality. Thus having made clear
the necessity for a result broader than van Hove's theorem, we set out to prove
such a general non-existence theorem, widening largely the class of models
known to be free of phase transitions. The theorem is presented from a rigorous
mathematical point of view although examples of the framework corresponding to
usual physical systems are given along the way. We close the paper with a
discussion in more physical terms of the implications of this non-existence
theorem.