Equivariant gerbes over compact simple Lie groups
Behrend, Kai ; Xu, Ping ; Zhang, Bin
arXiv, 0306183 / Harvested from arXiv
Using groupoid $S^1$-central extensions, we present, for a compact simple Lie group $G$, an infinite dimensional model of $S^1$-gerbe over the differential stack $G/G$ whose Dixmier-Douady class corresponds to the canonical generator of the equivariant cohomology $H_G^3 (G, Z)$.
Publié le : 2003-06-11
Classification:  Mathematics - Symplectic Geometry,  Mathematical Physics,  Mathematics - Algebraic Geometry,  Mathematics - Logic
@article{0306183,
     author = {Behrend, Kai and Xu, Ping and Zhang, Bin},
     title = {Equivariant gerbes over compact simple Lie groups},
     journal = {arXiv},
     volume = {2003},
     number = {0},
     year = {2003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0306183}
}
Behrend, Kai; Xu, Ping; Zhang, Bin. Equivariant gerbes over compact simple Lie groups. arXiv, Tome 2003 (2003) no. 0, . http://gdmltest.u-ga.fr/item/0306183/