The renewed interest in investigating quaternionic quantum mechanics, in
particular tunneling effects, and the recent results on quaternionic
differential operators motivate the study of resolution methods for
quaternionic differential equations. In this paper, by using the real matrix
representation of left/right acting quaternionic operators, we prove existence
and uniqueness for quaternionic initial value problems, discuss the reduction
of order for quaternionic homogeneous differential equations and extend to the
non-commutative case the method of variation of parameters. We also show that
the standard Wronskian cannot uniquely be extended to the quaternionic case.
Nevertheless, the absolute value of the complex Wronskian admits a
non-commutative extension for quaternionic functions of one real variable.
Linear dependence and independence of solutions of homogeneous (right) H-linear
differential equations is then related to this new functional. Our discussion
is, for simplicity, presented for quaternionic second order differential
equations. This involves no loss of generality. Definitions and results can be
readily extended to the n-order case.