A path integral derivation of $\chi_y$-genus
Meng, Guowu
arXiv, 0306041 / Harvested from arXiv
The formula for the Hirzebruch $\chi_y$-genus of complex manifolds is a consequence of the Hirzebruch-Riemann-Roch formula. The classical index formulae for Todd genus, Euler number, and Signature correspond to the case when the complex variable $y=$ 0, -1, and 1 respectively. Here we give a {\it direct} derivation of this nice formula based on supersymmetric quantum mechanics.
Publié le : 2003-06-13
Classification:  Mathematical Physics,  19K56, 81S40
@article{0306041,
     author = {Meng, Guowu},
     title = {A path integral derivation of $\chi\_y$-genus},
     journal = {arXiv},
     volume = {2003},
     number = {0},
     year = {2003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0306041}
}
Meng, Guowu. A path integral derivation of $\chi_y$-genus. arXiv, Tome 2003 (2003) no. 0, . http://gdmltest.u-ga.fr/item/0306041/