On the Lie symmetries of Kepler-Ermakov systems
Karasu, A. ; Yildirim, H.
arXiv, 0306037 / Harvested from arXiv
In this work, we study the Lie-point symmetries of Kepler--Ermakov systems presented by C. Athorne in J. Phys. A24 (1991), L1385--L1389. We determine the forms of arbitrary function H(x,y) in order to find the members of this class possessing the sl(2,R) symmetry and a Lagrangian. We show that these systems are usual Ermakov systems with the frequency function depending on the dynamical variables.
Publié le : 2003-06-12
Classification:  Mathematical Physics
@article{0306037,
     author = {Karasu, A. and Yildirim, H.},
     title = {On the Lie symmetries of Kepler-Ermakov systems},
     journal = {arXiv},
     volume = {2003},
     number = {0},
     year = {2003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0306037}
}
Karasu, A.; Yildirim, H. On the Lie symmetries of Kepler-Ermakov systems. arXiv, Tome 2003 (2003) no. 0, . http://gdmltest.u-ga.fr/item/0306037/