We investigate the ground state properties of a gas of interacting particles
confined in an external potential in three dimensions and subject to rotation
around an axis of symmetry. We consider the so-called Gross-Pitaevskii (GP)
limit of a dilute gas. Analyzing both the absolute and the bosonic ground state
of the system we show, in particular, their different behavior for a certain
range of parameters. This parameter range is determined by the question whether
the rotational symmetry in the minimizer of the GP functional is broken or not.
For the absolute ground state, we prove that in the GP limit a modified GP
functional depending on density matrices correctly describes the energy and
reduced density matrices, independent of symmetry breaking. For the bosonic
ground state this holds true if and only if the symmetry is unbroken.