Given complex numbers $m_1,l_1$ and positive integers $m_2,l_2$, such that
$m_1+m_2=l_1+l_2$, we define $l_2$-dimensional hypergeometric integrals
$I_{a,b}(z;m_1,m_2,l_1,l_2)$, $a,b=0,...,\min(m_2,l_2)$, depending on a complex
parameter $z$. We show that
$I_{a,b}(z;m_1,m_2,l_1,l_2)=I_{a,b}(z;l_1,l_2,m_1,m_2)$, thus establishing an
equality of $l_2$ and $m_2$-dimensional integrals. This identity allows us to
study asymptotics of the integrals with respect to their dimension in some
examples. The identity is based on the $(gl_k,gl_n)$ duality for the KZ and
dynamical differential equations.