The relationship (resemblance and/or contrast) between quantum and classical
integrability in Ruijsenaars-Schneider systems, which are one parameter
deformation of Calogero-Moser systems, is addressed. Many remarkable properties
of classical Calogero and Sutherland systems (based on any root system) at
equilibrium are reported in a previous paper (Corrigan-Sasaki). For example,
the minimum energies, frequencies of small oscillations and the eigenvalues of
Lax pair matrices at equilibrium are all "integer valued". In this paper we
report that similar features and results hold for the Ruijsenaars-Schneider
type of integrable systems based on the classical root systems.