Some results on the eigenfunctions of the quantum trigonometric Calogero-Sutherland model related to the Lie Algebra $D_4$
Núñez, J. Fernández ; Fuertes, W. García ; Perelomov, A. M.
arXiv, 0305012 / Harvested from arXiv
We express the Hamiltonian of the quantum trigonometric Calogero-Sutherland model related to the Lie algebra $D_4$ in terms of a set of Weyl-invariant variables, namely, the characters of the fundamental representations of the Lie algebra. This parametrization allows us to solve for the energy eigenfunctions of the theory and to study properties of the system of orthogonal polynomials associated to them such as recurrence relations and generating functions.
Publié le : 2003-05-07
Classification:  Mathematical Physics,  Nonlinear Sciences - Exactly Solvable and Integrable Systems
@article{0305012,
     author = {N\'u\~nez, J. Fern\'andez and Fuertes, W. Garc\'\i a and Perelomov, A. M.},
     title = {Some results on the eigenfunctions of the quantum trigonometric
  Calogero-Sutherland model related to the Lie Algebra $D\_4$},
     journal = {arXiv},
     volume = {2003},
     number = {0},
     year = {2003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0305012}
}
Núñez, J. Fernández; Fuertes, W. García; Perelomov, A. M. Some results on the eigenfunctions of the quantum trigonometric
  Calogero-Sutherland model related to the Lie Algebra $D_4$. arXiv, Tome 2003 (2003) no. 0, . http://gdmltest.u-ga.fr/item/0305012/