The spaces of curvature tensors for holonomy algebras of Lorentzian manifolds
Galaev, Anton S.
arXiv, 0304407 / Harvested from arXiv
The holonomy algebra $\g$ of an indecomposable Lorentzian (n+2)-dimensional manifold $M$ is a weakly-irreducible subalgebra of the Lorentzian algebra $\so_{1,n+1}$. L. Berard Bergery and A. Ikemakhen divided weakly-irreducible not irreducible subalgebras into 4 types and associated with each such subalgebra $\g$ a subalgebra $\h\subset \so_n$ of the orthogonal Lie algebra. We give a description of the spaces $\R(\g)$ of the curvature tensors for algebras of each type in terms of the space $\P(\h)$ of $\h$-valued 1-forms on $\Real^n$ that satisfy the Bianchi identity and reduce the classification of the holonomy algebras of Lorentzian manifolds to the classification of irreducible subalgebras $\h$ of $so(n)$ with $L(\P(\h))=\h$. We prove that for $n\leq 9$ any such subalgebra $\h$ is the holonomy algebra of a Riemannian manifold. This gives a classification of the holonomy algebras for Lorentzian manifolds $M$ of dimension $\leq 11$.
Publié le : 2003-04-25
Classification:  Mathematics - Differential Geometry,  Mathematical Physics,  53c29, 53c50
@article{0304407,
     author = {Galaev, Anton S.},
     title = {The spaces of curvature tensors for holonomy algebras of Lorentzian
  manifolds},
     journal = {arXiv},
     volume = {2003},
     number = {0},
     year = {2003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0304407}
}
Galaev, Anton S. The spaces of curvature tensors for holonomy algebras of Lorentzian
  manifolds. arXiv, Tome 2003 (2003) no. 0, . http://gdmltest.u-ga.fr/item/0304407/