In this paper we consider energy operator (a free Hamiltonian), in the
second-quantized approach, for the multiparameter quon algebras:
$a_{i}a_{j}^{\dagger}-q_{ij}a_{j}^{\dagger}a_{i} = \delta_{ij}, i,j\in I$ with
$(q_{ij})_{i,j\in I}$ any hermitian matrix of deformation parameters. We obtain
an elegant formula for normally ordered (sometimes called Wick-ordered) series
expansions of number operators (which determine a free Hamiltonian). As a main
result (see Theorem 1) we prove that the number operators are given, with
respect to a basis formed by "generalized Lie elements", by certain normally
ordered quadratic expressions with coefficients given precisely by the entries
of the inverses of Gram matrices of multiparticle weight spaces. (This settles
a conjecture of two of the authors (S.M and A.P), stated in [8]). These Gram
matrices are hermitian generalizations of the Varchenko's matrices, associated
to a quantum (symmetric) bilinear form of diagonal arrangements of hyperplanes
(see [12]). The solution of the inversion problem of such matrices in [9]
(Theorem 2.2.17), leads to an effective formula for the number operators
studied in this paper. The one parameter case, in the monomial basis, was
studied by Zagier [15], Stanciu [11] and M{\o}ller [6].