Maths-type q-deformed coherent states for q > 1
Quesne, C. ; Penson, K. A. ; Tkachuk, V. M.
arXiv, 0303120 / Harvested from arXiv
Maths-type q-deformed coherent states with $q > 1$ allow a resolution of unity in the form of an ordinary integral. They are sub-Poissonian and squeezed. They may be associated with a harmonic oscillator with minimal uncertainties in both position and momentum and are intelligent coherent states for the corresponding deformed Heisenberg algebra.
Publié le : 2003-03-19
Classification:  Quantum Physics,  High Energy Physics - Theory,  Mathematical Physics,  Mathematics - Quantum Algebra
@article{0303120,
     author = {Quesne, C. and Penson, K. A. and Tkachuk, V. M.},
     title = {Maths-type q-deformed coherent states for q > 1},
     journal = {arXiv},
     volume = {2003},
     number = {0},
     year = {2003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0303120}
}
Quesne, C.; Penson, K. A.; Tkachuk, V. M. Maths-type q-deformed coherent states for q > 1. arXiv, Tome 2003 (2003) no. 0, . http://gdmltest.u-ga.fr/item/0303120/