Non-selfadjoint perturbations of selfadjoint operators in 2 dimensions I
Hitrik, Michael ; Sjoestrand, Johannes
arXiv, 0302297 / Harvested from arXiv
This is the first in a series of works devoted to small non-selfadjoint perturbations of selfadjoint $h$-pseudodifferential operators in dimension 2. In the present work we treat the case when the classical flow of the unperturbed part is periodic and the strength $\epsilon$ of the perturbation is $\gg h$ (or sometimes only $\gg h^2$) and bounded from above by $h^{\delta}$ for some $\delta>0$. We get a complete asymptotic description of all eigenvalues in certain rectangles $[-1/C, 1/C]+ i\epsilon [F_0-1/C,F_0+1/C]$.
Publié le : 2003-02-24
Classification:  Mathematics - Spectral Theory,  Mathematical Physics,  Mathematics - Analysis of PDEs,  31C10, 35P20, 35Q40, 37J35, 37J45, 53D22, 58J40
@article{0302297,
     author = {Hitrik, Michael and Sjoestrand, Johannes},
     title = {Non-selfadjoint perturbations of selfadjoint operators in 2 dimensions I},
     journal = {arXiv},
     volume = {2003},
     number = {0},
     year = {2003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0302297}
}
Hitrik, Michael; Sjoestrand, Johannes. Non-selfadjoint perturbations of selfadjoint operators in 2 dimensions I. arXiv, Tome 2003 (2003) no. 0, . http://gdmltest.u-ga.fr/item/0302297/