We consider the signed density of the extremal points of (two-dimensional)
scalar fields with a Gaussian distribution. We assign a positive unit charge to
the maxima and minima of the function and a negative one to its saddles. At
first, we compute the average density for a field in half-space with Dirichlet
boundary conditions. Then we calculate the charge-charge correlation function
(without boundary). We apply the general results to random waves and random
surfaces. Furthermore, we find a generating functional for the two-point
function. Its Legendre transform is the integral over the scalar curvature of a
4-dimensional Riemannian manifold.