Weak Hopf algebra symmetries of C^*-algebra inclusions
Szlachanyi, K.
arXiv, 0101005 / Harvested from arXiv
After a summary on module algebra actions of C^*-weak Hopf algebras we outline the proof of a reconstruction theorem stating that every finite index depth 2 inclusion N < M of unital C^*-algebras with finite dimensional centers is isomorphic to the invariant subalgebra inclusion M^A < M with respect to a regular weak Hopf algebra action. The proof uses the language of C^*-2-categories.
Publié le : 2000-12-31
Classification:  Mathematics - Quantum Algebra,  Mathematical Physics,  Mathematics - Operator Algebras
@article{0101005,
     author = {Szlachanyi, K.},
     title = {Weak Hopf algebra symmetries of C^*-algebra inclusions},
     journal = {arXiv},
     volume = {2000},
     number = {0},
     year = {2000},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0101005}
}
Szlachanyi, K. Weak Hopf algebra symmetries of C^*-algebra inclusions. arXiv, Tome 2000 (2000) no. 0, . http://gdmltest.u-ga.fr/item/0101005/