Explicit elements of norm one for cyclic groups
Aljadeff, Eli ; Kassel, Christian
arXiv, 0012038 / Harvested from arXiv
Let G be a cyclic p-group of order p^n acting by automorphisms on a (non-necessarily commutative) ring R. Suppose there is an element x in R such that (1 + t + ... + t^{p-1})(x) = 1, where t is an element of order p in G. We show how to construct an element y in R such that (1 + s + ... + s^{p^n-1})(y) = 1, where s is a generator of G.
Publié le : 2000-12-06
Classification:  Mathematics - Rings and Algebras,  Mathematical Physics,  16W22,  16U99,  20C05,  20J05
@article{0012038,
     author = {Aljadeff, Eli and Kassel, Christian},
     title = {Explicit elements of norm one for cyclic groups},
     journal = {arXiv},
     volume = {2000},
     number = {0},
     year = {2000},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0012038}
}
Aljadeff, Eli; Kassel, Christian. Explicit elements of norm one for cyclic groups. arXiv, Tome 2000 (2000) no. 0, . http://gdmltest.u-ga.fr/item/0012038/