A non-overdetermined inverse problem of finding the potential from the spectral function
Ramm, A. G.
arXiv, 0011035 / Harvested from arXiv
Let $D\subset \R^n$, $n\geq 3,$ be a bounded domain with a $C^{\infty}$ boundary $S$, $L=-\nabla^2+q(x)$ be a selfadjoint operator defined in $H=L^2(D)$ by the Neumann boundary condition, $\theta(x,y,\lambda)$ be its spectral function, $\theta(x,y,\lambda):=\ds\sum_{\lambda_j<\lambda} \phi_j(x)\phi$ where $L\phi_j=\lambda_j\phi_j$, $\phi_{j N}|_S=0,$ $\|\phi_j\|_{L^2(D)}=1$, $j=1,2,...$. The potential $q(x)$ is a real-valued function, $q\in C^\infty(D)$. It is proved that $q(x)$ is uniquely determined by the data $\theta(s,s,\lambda) \forall s\in S$, $\forall \lambda\in \R_+$ if all the eigenvalues of $L$ are simple.
Publié le : 2000-11-20
Classification:  Mathematical Physics,  Mathematics - Analysis of PDEs,  35R30
@article{0011035,
     author = {Ramm, A. G.},
     title = {A non-overdetermined inverse problem of finding the potential from the
  spectral function},
     journal = {arXiv},
     volume = {2000},
     number = {0},
     year = {2000},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0011035}
}
Ramm, A. G. A non-overdetermined inverse problem of finding the potential from the
  spectral function. arXiv, Tome 2000 (2000) no. 0, . http://gdmltest.u-ga.fr/item/0011035/