We study the spectrum of a random Schroedinger operator for an electron
submitted to a magnetic field in a finite but macroscopic two dimensional
system of linear dimensions equal to L. The y direction is periodic and in the
x direction the electron is confined by two smooth increasing boundary
potentials. The eigenvalues of the Hamiltonian are classified according to
their associated quantum mechanical current in the y direction. Here we look at
an interval of energies inside the first Landau band of the random operator for
the infinite plane. In this energy interval, with large probability, there
exist O(L) eigenvalues with positive or negative currents of O(1). Between each
of these there exist O(L^2) eigenvalues with infinitesimal current
O(exp(-cB(log L)^2)). We explain what is the relevance of this analysis to the
integer quantum Hall effect.