On algebro-geometric Poisson brackets for the Volterra lattice
Veselov, A. P. ; Penskoi, A. V.
arXiv, 0010027 / Harvested from arXiv
A generalization of the theory of algebro-geometric Poisson brackets on the space of finite-gap Schroedinger operators, developped by S. P. Novikov and A. P. Veselov, to the case of periodic zero-diagonal difference operators of second order is proposed. A necessary and sufficient condition for such a bracket to be compatible with higher Volterra flows is found.
Publié le : 2000-10-20
Classification:  Mathematical Physics,  Mathematics - Algebraic Geometry,  Nonlinear Sciences - Exactly Solvable and Integrable Systems,  34G20, 34L40
@article{0010027,
     author = {Veselov, A. P. and Penskoi, A. V.},
     title = {On algebro-geometric Poisson brackets for the Volterra lattice},
     journal = {arXiv},
     volume = {2000},
     number = {0},
     year = {2000},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0010027}
}
Veselov, A. P.; Penskoi, A. V. On algebro-geometric Poisson brackets for the Volterra lattice. arXiv, Tome 2000 (2000) no. 0, . http://gdmltest.u-ga.fr/item/0010027/