A generalization of the theory of algebro-geometric Poisson brackets on the
space of finite-gap Schroedinger operators, developped by S. P. Novikov and A.
P. Veselov, to the case of periodic zero-diagonal difference operators of
second order is proposed. A necessary and sufficient condition for such a
bracket to be compatible with higher Volterra flows is found.
@article{0010027,
author = {Veselov, A. P. and Penskoi, A. V.},
title = {On algebro-geometric Poisson brackets for the Volterra lattice},
journal = {arXiv},
volume = {2000},
number = {0},
year = {2000},
language = {en},
url = {http://dml.mathdoc.fr/item/0010027}
}
Veselov, A. P.; Penskoi, A. V. On algebro-geometric Poisson brackets for the Volterra lattice. arXiv, Tome 2000 (2000) no. 0, . http://gdmltest.u-ga.fr/item/0010027/