Quadratic algebras :Three-mode bosonic realizations and applications
SunilKumar, V. ; Bambah, B. A. ; Jagannathan, R.
arXiv, 0010017 / Harvested from arXiv
Quadratic algebras of the type $\lsb Q_0, Q_\pm \rsb$ $=$ $\pm Q_\pm$, $\lsb Q_+, Q_- \rsb$ $=$ $aQ_0^2 + bQ_0 + c$ are studied using three-mode bosonic realizations. Matrix representations and single variable differential operator realizations are obtained. Examples of physical relevance of such algebras are given.
Publié le : 2000-10-14
Classification:  Mathematical Physics,  Nonlinear Sciences - Exactly Solvable and Integrable Systems,  Quantum Physics
@article{0010017,
     author = {SunilKumar, V. and Bambah, B. A. and Jagannathan, R.},
     title = {Quadratic algebras :Three-mode bosonic realizations and applications},
     journal = {arXiv},
     volume = {2000},
     number = {0},
     year = {2000},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0010017}
}
SunilKumar, V.; Bambah, B. A.; Jagannathan, R. Quadratic algebras :Three-mode bosonic realizations and applications. arXiv, Tome 2000 (2000) no. 0, . http://gdmltest.u-ga.fr/item/0010017/