Hilbert C*-systems for actions of the circle group
Baumgaertel, H. ; Carey, A. L.
arXiv, 0010011 / Harvested from arXiv
The paper contains constructions of Hilbert systems for the action of the circle group $T$ using subgroups of implementable Bogoljubov unitaries w.r.t. Fock representations of the Fermion algebra for suitable data of the selfdual framework: ${\cal H}$ is the reference Hilbert space, $\Gamma$ the conjugation and $P$ a basis projection on ${\cal H}.$ The group $C({spec} {\cal Z}\to T)$ of $T$-valued functions on ${spec} {\cal Z}$ turns out to be isomorphic to the stabilizer of ${\cal A}$. In particular, examples are presented where the center ${\cal Z}$ of the fixed point algebra ${\cal A}$ can be calculated explicitly.
Publié le : 2000-10-10
Classification:  Mathematical Physics,  46L60, 81R10
@article{0010011,
     author = {Baumgaertel, H. and Carey, A. L.},
     title = {Hilbert C*-systems for actions of the circle group},
     journal = {arXiv},
     volume = {2000},
     number = {0},
     year = {2000},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0010011}
}
Baumgaertel, H.; Carey, A. L. Hilbert C*-systems for actions of the circle group. arXiv, Tome 2000 (2000) no. 0, . http://gdmltest.u-ga.fr/item/0010011/