On the Existence of Critical Points to the Seiberg-Witten Functional
Doria, Celso M.
arXiv, 0009245 / Harvested from arXiv
Considering that the Seiberg-Witten functional satisfies the Palais-Smale Condition, up to gauge equivalence, the Minimax Principle can be applied on the moduli space to prove the existence of critical points, which correspond to solutions of the second-order SW-equations, up to gauge equivalence.
Publié le : 2000-09-29
Classification:  Mathematics - Differential Geometry,  Mathematical Physics,  Mathematics - Geometric Topology,  58J05,  58E50
@article{0009245,
     author = {Doria, Celso M.},
     title = {On the Existence of Critical Points to the Seiberg-Witten Functional},
     journal = {arXiv},
     volume = {2000},
     number = {0},
     year = {2000},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0009245}
}
Doria, Celso M. On the Existence of Critical Points to the Seiberg-Witten Functional. arXiv, Tome 2000 (2000) no. 0, . http://gdmltest.u-ga.fr/item/0009245/