The probabilities for gaps in the eigenvalue spectrum of the finite dimension
$ N \times N $ random matrix Hermite and Jacobi unitary ensembles on some
single and disconnected double intervals are found. These are cases where a
reflection symmetry exists and the probability factors into two other related
probabilities, defined on single intervals. Our investigation uses the system
of partial differential equations arising from the Fredholm determinant
expression for the gap probability and the differential-recurrence equations
satisfied by Hermite and Jacobi orthogonal polynomials. In our study we find
second and third order nonlinear ordinary differential equations defining the
probabilities in the general $N$ case. For N=1 and N=2 the probabilities and
thus the solution of the equations are given explicitly. An asymptotic
expansion for large gap size is obtained from the equation in the Hermite case,
and also studied is the scaling at the edge of the Hermite spectrum as $ N \to
\infty $, and the Jacobi to Hermite limit; these last two studies make
correspondence to other cases reported here or known previously. Moreover, the
differential equation arising in the Hermite ensemble is solved in terms of an
explicit rational function of a {Painlev\'e-V} transcendent and its derivative,
and an analogous solution is provided in the two Jacobi cases but this time
involving a {Painlev\'e-VI} transcendent.