In this paper, we study two kinds of combinatorial objects, generalized
integer partitions and tilings of two dimensional zonotopes, using dynamical
systems and order theory. We show that the sets of partitions ordered with a
simple dynamics, have the distributive lattice structure. Likewise, we show
that the set of tilings of zonotopes, ordered with a simple and classical
dynamics, is the disjoint union of distributive lattices which we describe. We
also discuss the special case of linear integer partitions, for which other
dynamical systems exist. These results give a better understanding of the
behaviour of tilings of zonotopes with flips and dynamical systems involving
partitions.