Symplectic reduction is reinterpreted as the composition of arrows in the
category of integrable Poisson manifolds, whose arrows are isomorphism classes
of dual pairs, with symplectic groupoids as units. Morita equivalence of
Poisson manifolds amounts to isomorphism of objects in this category.
This description paves the way for the quantization of the classical
reduction procedure, which is based on the formal analogy between dual pairs of
Poisson manifolds and Hilbert bimodules over C*-algebras, as well as with
correspondences between von Neumann algebras. Further analogies are drawn with
categories of groupoids (of algebraic, measured, Lie, and symplectic type). In
all cases, the arrows are isomorphism classes of appropriate bimodules, and
their composition may be seen as a tensor product. Hence in suitable categories
reduction is simply composition of arrows, and Morita equivalence is
isomorphism of objects.