This is the first of two articles in which we give a proof - for a broad
class of four-manifolds - of Witten's conjecture that the Donaldson and
Seiberg-Witten series coincide, at least through terms of degree less than or
equal to c-2, where c is a linear combination of the Euler characteristic and
signature of the four-manifold. This article is a revision of sections 1-3 of
an earlier version of the article dg-ga/9712005, now split into two parts,
while a revision of sections 4-7 of that earlier version appears in a recently
updated dg-ga/9712005. In the present article, we construct virtual normal
bundles for the Seiberg-Witten strata of the moduli space of PU(2) monopoles
and compute their Chern classes.