Scattering rules in soliton cellular automata associated with crystal bases
Hatayama, G. ; Kuniba, A. ; Okado, M. ; Takagi, T. ; Yamada, Y.
arXiv, 0007175 / Harvested from arXiv
Solvable vertex models in a ferromagnetic regime give rise to soliton cellular automata at q=0. By means of the crystal base theory, we study a class of such automata associated with the quantum affine algebra U_q(g_n) for non exceptional series g_n = A^{(2)}_{2n-1}, A^{(2)}_{2n}, B^{(1)}_n, C^{(1)}_n, D^{(1)}_n and D^{(2)}_{n+1}. They possess a commuting family of time evolutions and solitons labeled by crystals of the smaller algebra U_q(g_{n-1}). Two-soliton scattering rule is identified with the combinatorial R of U_q(g_{n-1})-crystals, and the multi-soliton scattering is shown to factorize into the two-body ones.
Publié le : 2000-07-27
Classification:  Mathematics - Quantum Algebra,  Mathematical Physics,  Nonlinear Sciences - Exactly Solvable and Integrable Systems,  81R50 (Primary) 82B23, 37B15 (Secondary)
@article{0007175,
     author = {Hatayama, G. and Kuniba, A. and Okado, M. and Takagi, T. and Yamada, Y.},
     title = {Scattering rules in soliton cellular automata associated with crystal
  bases},
     journal = {arXiv},
     volume = {2000},
     number = {0},
     year = {2000},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0007175}
}
Hatayama, G.; Kuniba, A.; Okado, M.; Takagi, T.; Yamada, Y. Scattering rules in soliton cellular automata associated with crystal
  bases. arXiv, Tome 2000 (2000) no. 0, . http://gdmltest.u-ga.fr/item/0007175/