Several N-body problems in ordinary (3-dimensional) space are introduced
which are characterized by Newtonian equations of motion (``acceleration equal
force;'' in most cases, the forces are velocity-dependent) and are amenable to
exact treatment (``solvable'' and/or ``integrable'' and/or ``linearizable'').
These equations of motion are always rotation-invariant, and sometimes
translation-invariant as well. In many cases they are Hamiltonian, but the
discussion of this aspect is postponed to a subsequent paper. We consider
``few-body problems'' (with, say, \textit{N}=1,2,3,4,6,8,12,16,...) as well as
``many-body problems'' (N an arbitrary positive integer). The main focus of
this paper is on various techniques to uncover such N-body problems. We do not
discuss the detailed behavior of the solutions of all these problems, but we do
identify several models whose motions are completely periodic or multiply
periodic, and we exhibit in rather explicit form the solutions in some cases.