On the eigenproblems of PT-symmetric oscillators
Shin, K. C.
arXiv, 0007006 / Harvested from arXiv
We consider the non-Hermitian Hamiltonian H= -\frac{d^2}{dx^2}+P(x^2)-(ix)^{2n+1} on the real line, where P(x) is a polynomial of degree at most n \geq 1 with all nonnegative real coefficients (possibly P\equiv 0). It is proved that the eigenvalues \lambda must be in the sector | arg \lambda | \leq \frac{\pi}{2n+3}. Also for the case H=-\frac{d^2}{dx^2}-(ix)^3, we establish a zero-free region of the eigenfunction u and its derivative u^\prime and we find some other interesting properties of eigenfunctions.
Publié le : 2000-07-05
Classification:  Mathematical Physics
@article{0007006,
     author = {Shin, K. C.},
     title = {On the eigenproblems of PT-symmetric oscillators},
     journal = {arXiv},
     volume = {2000},
     number = {0},
     year = {2000},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0007006}
}
Shin, K. C. On the eigenproblems of PT-symmetric oscillators. arXiv, Tome 2000 (2000) no. 0, . http://gdmltest.u-ga.fr/item/0007006/