Limitations on the smooth confinement of an unstretchable manifold
Venkataramani, S. C. ; Witten, T. A. ; Kramer, E. M. ; Geroch, R. P.
arXiv, 0007003 / Harvested from arXiv
We prove that an m-dimensional unit ball D^m in the Euclidean space {\mathbb R}^m cannot be isometrically embedded into a higher-dimensional Euclidean ball B_r^d \subset {\mathbb R}^d of radius r < 1/2 unless one of two conditions is met -- (1)The embedding manifold has dimension d >= 2m. (2) The embedding is not smooth. The proof uses differential geometry to show that if d<2m and the embedding is smooth and isometric, we can construct a line from the center of D^m to the boundary that is geodesic in both D^m and in the embedding manifold {\mathbb R}^d. Since such a line has length 1, the diameter of the embedding ball must exceed 1.
Publié le : 2000-07-03
Classification:  Mathematical Physics,  Mathematics - Differential Geometry
@article{0007003,
     author = {Venkataramani, S. C. and Witten, T. A. and Kramer, E. M. and Geroch, R. P.},
     title = {Limitations on the smooth confinement of an unstretchable manifold},
     journal = {arXiv},
     volume = {2000},
     number = {0},
     year = {2000},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0007003}
}
Venkataramani, S. C.; Witten, T. A.; Kramer, E. M.; Geroch, R. P. Limitations on the smooth confinement of an unstretchable manifold. arXiv, Tome 2000 (2000) no. 0, . http://gdmltest.u-ga.fr/item/0007003/