A PT-Invariant Potential With Complex QES Eigenvalues
Khare, Avinash ; Mandal, Bhabani Prasad
arXiv, 0006126 / Harvested from arXiv
We show that the quasi-exactly solvable eigenvalues of the Schr\"odinger equation for the PT-invariant potential $V(x) = -(\zeta \cosh 2x -iM)^2$ are complex conjugate pairs in case the parameter M is an even integer while they are real in case M is an odd integer. We also show that whereas the PT symmetry is spontaneously broken in the former case, it is unbroken in the latter case.
Publié le : 2000-06-28
Classification:  Quantum Physics,  High Energy Physics - Theory,  Mathematical Physics
@article{0006126,
     author = {Khare, Avinash and Mandal, Bhabani Prasad},
     title = {A PT-Invariant Potential With Complex QES Eigenvalues},
     journal = {arXiv},
     volume = {2000},
     number = {0},
     year = {2000},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0006126}
}
Khare, Avinash; Mandal, Bhabani Prasad. A PT-Invariant Potential With Complex QES Eigenvalues. arXiv, Tome 2000 (2000) no. 0, . http://gdmltest.u-ga.fr/item/0006126/