Hirota bilinear formalism and Supersymmetry
Carstea, A. S.
arXiv, 0006032 / Harvested from arXiv
Extending the gauge-invariance principle for $\tau$ functions of the standard bilinear formalism to the supersymmetric case, we define ${\cal N}=1$ supersymmetric Hirota bilinear operators. Using them we bilinearize supersymmetric nonlinear evolution equations. The super-soliton solutions are discussed. As a quite strange paradox it is shown that the Lax integrable supersymmetric KdV of Manin-Radul-Mathieu equation does not possesses N super-soliton solution for $N\geq 3$ for arbitrary parameters. Only for a particular choice of them the N super-soliton solution exists.
Publié le : 2000-06-21
Classification:  Nonlinear Sciences - Exactly Solvable and Integrable Systems,  Mathematical Physics
@article{0006032,
     author = {Carstea, A. S.},
     title = {Hirota bilinear formalism and Supersymmetry},
     journal = {arXiv},
     volume = {2000},
     number = {0},
     year = {2000},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0006032}
}
Carstea, A. S. Hirota bilinear formalism and Supersymmetry. arXiv, Tome 2000 (2000) no. 0, . http://gdmltest.u-ga.fr/item/0006032/