Integrable highest weight modules over affine superalgebras and Appell's function
Kac, Victor G. ; Wakimoto, Minoru
arXiv, 0006007 / Harvested from arXiv
We classify integrable irreducible highest weight representations of non-twisted affine Lie superalgebras. We give a free field construction in the level~1 case. The analysis of this construction shows, in particular, that in the simplest case of the $s\ell (2|1)$ level~1 affine superalgebra the characters are expressed in terms of the Appell elliptic function. Our results demonstrate that the representation theory of affine Lie superalgebras is quite different from that of affine Lie algebras.
Publié le : 2000-06-07
Classification:  Mathematical Physics
@article{0006007,
     author = {Kac, Victor G. and Wakimoto, Minoru},
     title = {Integrable highest weight modules over affine superalgebras and Appell's
  function},
     journal = {arXiv},
     volume = {2000},
     number = {0},
     year = {2000},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0006007}
}
Kac, Victor G.; Wakimoto, Minoru. Integrable highest weight modules over affine superalgebras and Appell's
  function. arXiv, Tome 2000 (2000) no. 0, . http://gdmltest.u-ga.fr/item/0006007/