By the quantization condition compact quantizable Kaehler manifolds can be
embedded into projective space. In this way they become projective varieties.
The quantum Hilbert space of the Berezin-Toeplitz quantization (and of the
geometric quantization) is the projective coordinate ring of the embedded
manifold. This allows for generalization to the case of singular varieties. The
set-up is explained in the first part of the contribution. The second part of
the contribution is of tutorial nature. Necessary notions, concepts, and
results of algebraic geometry appearing in this approach to quantization are
explained. In particular, the notions of projective varieties, embeddings,
singularities, and quotients appearing in geometric invariant theory are
recalled.