Liouville Integrability of Classical Calogero-Moser Models
Khastgir, S. P. ; Sasaki, R.
arXiv, 0005278 / Harvested from arXiv
Liouville integrability of classical Calogero-Moser models is proved for models based on any root systems, including the non-crystallographic ones. It applies to all types of elliptic potentials, i.e. untwisted and twisted together with their degenerations (hyperbolic, trigonometric and rational), except for the rational potential models confined by a harmonic force.
Publié le : 2000-05-30
Classification:  High Energy Physics - Theory,  Condensed Matter,  Mathematical Physics,  Nonlinear Sciences - Exactly Solvable and Integrable Systems,  Quantum Physics
@article{0005278,
     author = {Khastgir, S. P. and Sasaki, R.},
     title = {Liouville Integrability of Classical Calogero-Moser Models},
     journal = {arXiv},
     volume = {2000},
     number = {0},
     year = {2000},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0005278}
}
Khastgir, S. P.; Sasaki, R. Liouville Integrability of Classical Calogero-Moser Models. arXiv, Tome 2000 (2000) no. 0, . http://gdmltest.u-ga.fr/item/0005278/