Intrinsic geometry of convex ideal polyhedra in hyperbolic 3-space
Rivin, Igor
arXiv, 0005234 / Harvested from arXiv
The main result is that every complete finite area hyperbolic metric on a sphere with punctures can be uniquely realized as the induced metric on the surface of a convex ideal polyhedron in hyperbolic 3-space. A number of other observations are included.
Publié le : 2000-05-23
Classification:  Mathematics - Geometric Topology,  Mathematical Physics,  Mathematics - Combinatorics,  Mathematics - Differential Geometry,  Mathematics - Metric Geometry,  52B70,  51M10,  51M20,  52A55,  52B10,  57M50
@article{0005234,
     author = {Rivin, Igor},
     title = {Intrinsic geometry of convex ideal polyhedra in hyperbolic 3-space},
     journal = {arXiv},
     volume = {2000},
     number = {0},
     year = {2000},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0005234}
}
Rivin, Igor. Intrinsic geometry of convex ideal polyhedra in hyperbolic 3-space. arXiv, Tome 2000 (2000) no. 0, . http://gdmltest.u-ga.fr/item/0005234/