Uniform ergodic theorems on subshifts over a finite alphabet
Lenz, Daniel
arXiv, 0005067 / Harvested from arXiv
We investigate uniform ergodic type theorems for additive and subadditive functions on a subshift over a finite alphabet. We show that every strictly ergodic subshift admits a uniform ergodic theorem for Banach-space-valued additive functions. We then give a necessary and sufficient condition on a minimal subshift to allow for a uniform subadditive ergodic theorem. This provides in particular a sufficient condition for unique ergodicity.
Publié le : 2000-05-07
Classification:  Mathematics - Dynamical Systems,  Mathematical Physics,  37A30, 37B10, 52C23
@article{0005067,
     author = {Lenz, Daniel},
     title = {Uniform ergodic theorems on subshifts over a finite alphabet},
     journal = {arXiv},
     volume = {2000},
     number = {0},
     year = {2000},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0005067}
}
Lenz, Daniel. Uniform ergodic theorems on subshifts over a finite alphabet. arXiv, Tome 2000 (2000) no. 0, . http://gdmltest.u-ga.fr/item/0005067/