Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models I. General Theory and Square-Lattice Chromatic Polynomial
Salas, Jesús ; Sokal, Alan D.
arXiv, 0004330 / Harvested from arXiv
We study the chromatic polynomials (= zero-temperature antiferromagnetic Potts-model partition functions) P_G(q) for m \times n rectangular subsets of the square lattice, with m \le 8 (free or periodic transverse boundary conditions) and n arbitrary (free longitudinal boundary conditions), using a transfer matrix in the Fortuin-Kasteleyn representation. In particular, we extract the limiting curves of partition-function zeros when n \to\infty, which arise from the crossing in modulus of dominant eigenvalues (Beraha-Kahane-Weiss theorem). We also provide evidence that the Beraha numbers B_2,B_3,B_4,B_5 are limiting points of partition-function zeros as n \to\infty whenever the strip width m is \ge 7 (periodic transverse b.c.) or \ge 8 (free transverse b.c.). Along the way, we prove that a noninteger Beraha number (except perhaps B_{10}) cannot be a chromatic root of any graph.
Publié le : 2000-04-19
Classification:  Condensed Matter - Statistical Mechanics,  High Energy Physics - Lattice,  Mathematical Physics,  Mathematics - Combinatorics
@article{0004330,
     author = {Salas, Jes\'us and Sokal, Alan D.},
     title = {Transfer Matrices and Partition-Function Zeros for Antiferromagnetic
  Potts Models I. General Theory and Square-Lattice Chromatic Polynomial},
     journal = {arXiv},
     volume = {2000},
     number = {0},
     year = {2000},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0004330}
}
Salas, Jesús; Sokal, Alan D. Transfer Matrices and Partition-Function Zeros for Antiferromagnetic
  Potts Models I. General Theory and Square-Lattice Chromatic Polynomial. arXiv, Tome 2000 (2000) no. 0, . http://gdmltest.u-ga.fr/item/0004330/