Ribbon-moves of 2-knots: the Farber-Levine pairing and the Atiyah-Patodi-Singer-Casson-Gordon-Ruberman $\widetilde\eta$-invariants of 2-knots
Ogasa, Eiji
arXiv, 0004007 / Harvested from arXiv
Let K and K' be 2-knots. Suppose that K and K' are ribbon-move equivalent. Then the Farber-Levine pairing for K is equivalent to that for K' and the (Z-)torsion part of the first Alexander module of $K$ is isomorphic to that of K' as Z[Z] modules. Let K be a 2-knot which is ribbon-move equivalent to the trivial knot. Then the Atiyah-Patodi-Singer-Casson-Gordon-Ruberman Q/Z-valued \widetilde\eta-invariants of K for Z_d is zero. (d is a natural number. d>2.).
Publié le : 2000-04-02
Classification:  Mathematics - Geometric Topology,  Mathematical Physics,  57M25, 57Q45, 57R65
@article{0004007,
     author = {Ogasa, Eiji},
     title = {Ribbon-moves of 2-knots: the Farber-Levine pairing and the
  Atiyah-Patodi-Singer-Casson-Gordon-Ruberman $\widetilde\eta$-invariants of
  2-knots},
     journal = {arXiv},
     volume = {2000},
     number = {0},
     year = {2000},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0004007}
}
Ogasa, Eiji. Ribbon-moves of 2-knots: the Farber-Levine pairing and the
  Atiyah-Patodi-Singer-Casson-Gordon-Ruberman $\widetilde\eta$-invariants of
  2-knots. arXiv, Tome 2000 (2000) no. 0, . http://gdmltest.u-ga.fr/item/0004007/