Kinks from Dynamical Systems: Domain Walls in a Deformed O(N) Linear Sigma Model
Izquierdo, A. Alonso ; Leon, M. A. Gonzalez ; Guilarte, J. Mateos
arXiv, 0003224 / Harvested from arXiv
It is shown how a integrable mechanical system provides all the localized static solutions of a deformation of the linear O(N)-sigma model in two space-time dimensions. The proof is based on the Hamilton-Jacobi separability of the mechanical analogue system that follows when time-independent field configurations are being considered. In particular, we describe the properties of the different kinds of kinks in such a way that a hierarchical structure of solitary wave manifolds emerges for distinct N.
Publié le : 2000-03-24
Classification:  High Energy Physics - Theory,  Mathematical Physics
@article{0003224,
     author = {Izquierdo, A. Alonso and Leon, M. A. Gonzalez and Guilarte, J. Mateos},
     title = {Kinks from Dynamical Systems: Domain Walls in a Deformed O(N) Linear
  Sigma Model},
     journal = {arXiv},
     volume = {2000},
     number = {0},
     year = {2000},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0003224}
}
Izquierdo, A. Alonso; Leon, M. A. Gonzalez; Guilarte, J. Mateos. Kinks from Dynamical Systems: Domain Walls in a Deformed O(N) Linear
  Sigma Model. arXiv, Tome 2000 (2000) no. 0, . http://gdmltest.u-ga.fr/item/0003224/