On the zero modes of Pauli operators
Balinsky, A. A. ; Evans, W. D.
arXiv, 0003216 / Harvested from arXiv
Two results are proved for $\mathrm{nul} \mathbb{P}_A$, the dimension of the kernel of the Pauli operator $\mathbb{P}_A = \bigl\{\bbf{\sigma} \cdotp \bigl(\frac{1}{i} \bbf{\nabla} + \vec{A} \bigr) \bigr\} ^2 $ in $[L^2 (\mathbb{R}^3)]^2$: (i) for $|\vec{B}| \in L^{3/2} (\mathbb{R}^3),$ where $\vec{B} = \mathrm{curl} \vec{A}$ is the magnetic field, $\mathrm{nul} \ \mathbb{P}_{tA} = 0$ except for a finite number of values of $t$ in any compact subset of $(0, \infty)$; (ii) $\bigl\{\vec{B}: \mathrm{nul} \mathbb{P}_{A} = 0, | \vec{B} | \in L^{3/2}(\mathbb{R}^3) \bigr\} $ contains an open dense subset of $[L^{3/2}(\mathbb{R}^3)]^3$.
Publié le : 2000-03-30
Classification:  Mathematics - Spectral Theory,  Mathematical Physics
@article{0003216,
     author = {Balinsky, A. A. and Evans, W. D.},
     title = {On the zero modes of Pauli operators},
     journal = {arXiv},
     volume = {2000},
     number = {0},
     year = {2000},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0003216}
}
Balinsky, A. A.; Evans, W. D. On the zero modes of Pauli operators. arXiv, Tome 2000 (2000) no. 0, . http://gdmltest.u-ga.fr/item/0003216/