Quantum matrix algebra for the SU(n) WZNW model
Furlan, P. ; Hadjiivanov, L. K. ; Isaev, A. P. ; Ogievetsky, O. V. ; Pyatov, P. N. ; Todorov, I. T.
arXiv, 0003210 / Harvested from arXiv
The zero modes of the chiral SU(n) WZNW model give rise to an intertwining quantum matrix algebra A generated by an n x n matrix a=(a^i_\alpha) (with noncommuting entries) and by rational functions of n commuting elements q^{p_i}. We study a generalization of the Fock space (F) representation of A for generic q (q not a root of unity) and demonstrate that it gives rise to a model of the quantum universal enveloping algebra U_q(sl_n), each irreducible representation entering F with multiplicity 1. For an integer level k the complex parameter q is an even root of unity, q^h=-1 (h=k+n) and the algebra A has an ideal I_h such that the factor algebra A_h = A/I_h is finite dimensional.
Publié le : 2000-03-23
Classification:  High Energy Physics - Theory,  Mathematical Physics,  Mathematics - Quantum Algebra
@article{0003210,
     author = {Furlan, P. and Hadjiivanov, L. K. and Isaev, A. P. and Ogievetsky, O. V. and Pyatov, P. N. and Todorov, I. T.},
     title = {Quantum matrix algebra for the SU(n) WZNW model},
     journal = {arXiv},
     volume = {2000},
     number = {0},
     year = {2000},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0003210}
}
Furlan, P.; Hadjiivanov, L. K.; Isaev, A. P.; Ogievetsky, O. V.; Pyatov, P. N.; Todorov, I. T. Quantum matrix algebra for the SU(n) WZNW model. arXiv, Tome 2000 (2000) no. 0, . http://gdmltest.u-ga.fr/item/0003210/