Geometrical techniques for the N-dimensional Quantum Euclidean Spaces
Cerchiai, B. L. ; Fiore, G. ; Madore, J.
arXiv, 0002215 / Harvested from arXiv
We briefly report our application of a version of noncommutative geometry to the quantum Euclidean space $R^N_q$, for any $N \ge 3$; this space is covariant under the action of the quantum group $SO_q(N)$, and two covariant differential calculi are known on it. More precisely, we describe how to construct in a Cartan `moving-frame formalism' the metric, two covariant derivatives, the Dirac operator, the frame, the inner derivations dual to the frame elements, for both of these calculi. The components of the frame elements in the basis of differentials provide a `local realization' of the Faddeev-Reshetikhin-Takhtadjan generators of $U_q^{\pm}(so(N))$.
Publié le : 2000-02-25
Classification:  Mathematics - Quantum Algebra,  Mathematical Physics,  81R50,  17B37
@article{0002215,
     author = {Cerchiai, B. L. and Fiore, G. and Madore, J.},
     title = {Geometrical techniques for the N-dimensional Quantum Euclidean Spaces},
     journal = {arXiv},
     volume = {2000},
     number = {0},
     year = {2000},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0002215}
}
Cerchiai, B. L.; Fiore, G.; Madore, J. Geometrical techniques for the N-dimensional Quantum Euclidean Spaces. arXiv, Tome 2000 (2000) no. 0, . http://gdmltest.u-ga.fr/item/0002215/