Generalized Riemann - Liouville fractional derivatives for multifractal sets
Kobelev, L. Ya.
arXiv, 0002008 / Harvested from arXiv
The Riemann-Liouville fractional integrals and derivatives are generalized for cases when fractional exponent $d$ are functions of space and times coordinates (i.e. $d=d({\bf r}(t),t)$).
Publié le : 2000-02-01
Classification:  Mathematics - Classical Analysis and ODEs,  Mathematical Physics
@article{0002008,
     author = {Kobelev, L. Ya.},
     title = {Generalized Riemann - Liouville fractional derivatives for multifractal
  sets},
     journal = {arXiv},
     volume = {2000},
     number = {0},
     year = {2000},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0002008}
}
Kobelev, L. Ya. Generalized Riemann - Liouville fractional derivatives for multifractal
  sets. arXiv, Tome 2000 (2000) no. 0, . http://gdmltest.u-ga.fr/item/0002008/