Homotopy algebras via resolutions of operads
Markl, Martin
Proceedings of the 19th Winter School "Geometry and Physics", GDML_Books, (2000), p. 157-164 / Harvested from

Summary: All algebraic objects in this note will be considered over a fixed field k of characteristic zero. If not stated otherwise, all operads live in the category of differential graded vector spaces over k. For standard terminology concerning operads, algebras over operads, etc., see either the original paper by J. P. May [“The geometry of iterated loop spaces”, Lect. Notes Math. 271 (1972; Zbl 0244.55009)], or an overview [J.-L. Loday, “La renaissance des opérads”, Sémin. Bourbaki 1994/95, Exp. No. 792, Asterisque 237, 47-74 (1996; Zbl 0866.18007)].The aim of this note is mainly to advocate our approach to homotopy algebras based on the minimal model of an operad. Our intention is to expand it to a paper on homotopy properties of the category of homotopy algebras; some possible results in this direction are indicated in Section 3.

EUDML-ID : urn:eudml:doc:221254
Mots clés:
@article{701658,
     title = {Homotopy algebras via resolutions of operads},
     booktitle = {Proceedings of the 19th Winter School "Geometry and Physics"},
     series = {GDML\_Books},
     publisher = {Circolo Matematico di Palermo},
     address = {Palermo},
     year = {2000},
     pages = {157-164},
     mrnumber = {MR1758091},
     zbl = {0962.18007},
     url = {http://dml.mathdoc.fr/item/701658}
}
Markl, Martin. Homotopy algebras via resolutions of operads, dans Proceedings of the 19th Winter School "Geometry and Physics", GDML_Books,  (2000), pp. 157-164. http://gdmltest.u-ga.fr/item/701658/