On Gelfand-Zetlin modules
Drozd, Yu. A. ; Ovsienko, S. A. ; Futorny, V. M.
Proceedings of the Winter School "Geometry and Physics", GDML_Books, (1991), p. [143]-147 / Harvested from

[For the entire collection see Zbl 0742.00067.]Let 𝔤k be the Lie algebra 𝔤l(k,𝒞), and let Uk be the universal enveloping algebra for 𝔤k. Let Zk be the center of Uk. The authors consider the chain of Lie algebras 𝔤n𝔤n-1𝔤1. Then Z=Zkk=1,2,n is an associative algebra which is called the Gel’fand-Zetlin subalgebra of Un. A 𝔤n module V is called a GZ-module if V=xV(x), where the summation is over the space of characters of Z and V(x)={vV(a-x(a))mv=0, m𝒵+, a𝒵}. The authors describe several properties of GZ- modules. For example, they prove that if V(x)=0 for some x and the module V is simple, then V is a GZ-module. Indecomposable GZ- modules are also described. The authors give three conjectures on GZ- modules and!

EUDML-ID : urn:eudml:doc:220503
Mots clés:
@article{701487,
     title = {On Gelfand-Zetlin modules},
     booktitle = {Proceedings of the Winter School "Geometry and Physics"},
     series = {GDML\_Books},
     publisher = {Circolo Matematico di Palermo},
     address = {Palermo},
     year = {1991},
     pages = {[143]-147},
     mrnumber = {MR1151899},
     zbl = {0754.17005},
     url = {http://dml.mathdoc.fr/item/701487}
}
Drozd, Yu. A.; Ovsienko, S. A.; Futorny, V. M. On Gelfand-Zetlin modules, dans Proceedings of the Winter School "Geometry and Physics", GDML_Books,  (1991), pp. [143]-147. http://gdmltest.u-ga.fr/item/701487/